pks

Release 1.0

lionel tabourier, julien karadayi

Mar 07, 2024

CONTENTS:

1 Installation

1.1 Requirements o o it e e e e e e e e e e e e e

1.2 Installation oL e e e e e e e e
2 Usage

2.1 ImputFormat e

2.2 OUPUL .« . ot e e e e e e e

2.3 Target Constraints o L i e e e e e e e e e e e e e e e e e e

24 Command Line Interface e

3 Development guide

3.1 Package Structure e e e e
3.2 Graph e e e e e
33 MarkovChain e e e e
34 Stat . ..o e e
3.5 Contribution L. e e e e e e e e e e

4 Benchmark

4.1 DatasetS. e e e e e e e e e e
42 Protocol. e e e e e e
43 Results e e e e e e e
4.4 References e e e e e

5 Python API Documentation

5.1 Graph . . o . e e e e e e e
5.2 MarkovChain e e
5.3 Stat . .o e e e e e e e e e
Python Module Index
Index

W W

AN N L L

13
13
13
14
14

15
15
17
19

21

23

pks, Release 1.0

* pks (probabilistic k-swap) is a python package that provides a MCMC method to generate a uniform sample of
graphs under certain constraints.

CONTENTS: 1

pks, Release 1.0

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

1.1 Requirements

* pip and setuptools. To upgrade to final version : pip install --upgrade pip setuptools wheel
e arch : pip install arch

* numpy

* argparse

* progressbar

* pytest

* joblib

* ipdb (not needed but useful for debugging)

1.2 Installation

* To install the package :
pip install ./
¢ Check if package works as intended:

pytest tests/test.py

pks, Release 1.0

4 Chapter 1. Installation

CHAPTER
TWO

USAGE

* The pks package provides a program to generate random simple graphs uniformly with a given set of target
constraints:

undirected graphs with a fixed degree sequence

directed graphs with a fixed degree sequence

bipartite graphs with a fixed degree sequence

directed graphs with a fixed degree sequence and a fixed number of mutual dyads

undirected graphs with a fixed joint degree matrix

2.1 Input Format

* The program takes as input a simple graph described as an edge list (one line corresponds to an edge, two nodes
are seperated by a space or tabulation):

12

35
65

Note: This package does not handle loops and multiple edges. If the input graph contains either, they will be auto-
matically removed when the graph is read.

2.2 Output

* The program generates a sample of graphs selected uniformly at random from the set of graphs with the same
target constraints as the input graph.

pks, Release 1.0

2.3 Target Constraints

* The program generates uniformly at random simple graphs (no loop, no multiedge).

 Several target constraints are available:

— fixed degree sequence (default): Can be applied on several “flavours” of simple graphs: undirected, di-
rected, bipartite. The convergence can be evaluated either by following the assortativity (-a option) or the
number of triangles (-t option).

— fixed joint degree matrix: Can be applied to undirected, directed and bipartite graphs. The convergence
can only be evaluated by following the number of triangles (-t), as the assortativity is constant.

— fixed number of mutual dyads: Can only be applied to directed graphs. A mutual dyad occurs when the
graph contain links in two directions between two nodes, this constraint fixes the total number of mutual
dyads in the graph. The model convergence can be evaluated either by following the assortativity (-a option)
or the number of triangles (-t option).

Note: A user can add to the code additional constraints by adding them to the MarkovChain class. The constraints
should be added in the check_swap method, used to verify if an edge swap is valid or not. An argument to select this
constraint can then be added to the list of arguments in the main.py file.

2.4 Command Line Interface

» Usage example, in the root folder of the package:

python kedgeswap/main.py -f ./data/ucidata-zachary/out.ucidata-zachary -o ./karateclub.out -a

¢ list of main.py parameters:

— Required arguments:

*k

*k

-f <path> : path to the input file.

-0 <path> : path to the output files. Will write N output graphs with this prefix as filename, where N
is fixed by the --output_number parameter (see Optional arguments).

-d : enable if the input graph is directed or bipartite.

-a: enable to follow the convergence of the Markov chain using the assortativity of the graph. Warning,
option is not compatible with -7 or -jd.

-t : enable to follow the convergence of the Markov chain using the number of triangles in the graph.
Warning, option is not compatible with -a.

-jd : (target constraint argument) enable to generate sample of graphs with a fixed joint degree matrix.
Warning: only works with - option to follow convergence (assortativity is constant when joint degree
matrix is fixed).

-md : (target constraint argument) enable to generate sample of graphs with a fixed number of mutual
dyads. Warning: only works on directed graphs (-d option).

— Optional arguments:

*k

*

-v : enable to be more verbose. Adds the Markov Chain status to the logs, number of accepted/rejected
swaps, DFGLS output to follow convergence.

-g <positive integer> : exponent of the probability law used to pick the number of edges to swap.

Chapter 2. Usage

pks, Release 1.0

% -e <positive integer> : sampling gap between each generated graph. If not specified, will use a (slow)
estimation method.

% --output_number <positive integer> : number N of uncorrelated graphs to generate once the Markov
Chain has reached its convergence. Default is 1000.

% --njobs <positive integer> : number of threads on which the process is parallelized, if possible. Default
is 4.

% --debug : makes some additional checks, like checking that the degree sequence hasn’t changed after
a swap (warning: slows down the code, only used for debugging purposes).

% --keep_record : enable to store every step (as gzip file) of the Markov chain, as well as every permu-
tation (warning: produces a large number of files, mostly useful for debugging purposes).

% --log_dir : only useful if keep_record is enabled. Specify a path to store each step of the Markov Chain.

2.4. Command Line Interface 7

pks, Release 1.0

8 Chapter 2. Usage

CHAPTER
THREE

DEVELOPMENT GUIDE

* The aim of this guide is to give a quick understanding of the structure of the package. If you want to modify or
add content to the package, this page should help you!

3.1 Package Structure

* This package is made of three classes that interact with each other:

— Graph: The Graph object reads the input graph and stores it in a data structure described below. The graph
is simple, without loop, can be undirected or directed, and can be bipartite. This is the class to check to
add new input format or to modify the data structure.

— MarkovChain: The MarkovChain object selects the edges to swap, checks the constraints, performs the
swap and measures some metrics on the graph (e.g., the assortativity value, the number of triangles). This
is the class to check to add new constraints on the MarkovChain (e.g. fixed number of triangles) or to
measure other values (number of a given motif).

— Stat: The Stat object estimates the sampling gap of the Markov Chain, and check if the Markov Chain has
converged. This is the class to check to adapt the sampling gap estimation, or to implement other methods
to check for the Markov Chain convergence.

* You will find below some insights on the implementations of each class.

3.2 Graph

» The Graph object stores a simple graph. The data structure used for the graph is
— for undirected, directed and bipartite graphs:

% M and N: int
Respectively store the number of edges and the number of nodes of the graph. Both remain constant
during the swapping process.

% neighbors: dict(list)
Stores the adjacency list for each node of the graph. Given that the structure is a dictionary (hash
map), getting the adjacency list of a node is in O(1), amortized time. neighbors is used to store
the neighbors of each node, and is updated at each swap.

* unique_edges: list
Stores one copy of each edge of the graph. unique_edges is used to uniformly pick random edges
of the graph, and is updated at each swap.

pks, Release 1.0

directed: bool
Indicates if the graph is directed or not.

— for undirected graphs:

% edges: dict(int)
For each edge (u,v), stores the position of v in the adjacency list of u. E.g.

v_idx = edges[(u,v)]
u_idx = edges[(v,u)]

neighbors[u] [v_idx] == v # True
neighbors[v][u_idx] == u # True
— for directed graphs:

% in_neighbors and out_neighbors: dict(list)
For each node u of the graph, respectively store the incoming neighbors and outgoing neighbors
of u. This structure is used for example to check on mutual dyads and is updated at each swap.

% edges: dict(tuple)
For each edge (u,v), it stores the position of v in neighbors[u], in out_neighbors[u], and the
position of u in neighbors[v] and in in_neighbors[v].

3.3 MarkovChain

* The main function of the MarkovChain object is the run method, that calls all the others depending on the input
constraints. To add new constraints, update the check_swap method, that accepts or rejects a swap depending
on the constraints.

— pick_k : Chooses a k value following a power-law distribution with exponent gamma
— find_swap : Uniformly chooses k edges to swap, and a random permutation.

— check_swap :
Checks that the chosen swap respects each constraint. The complexity depends on the constraints. For
undirected graph, with fixed degree sequence constraint (the basic case), for each swap between (u,v)
and (x,y):

Checks that it doesn’t create a loop (u !=y) in O(1).
Checks that swapped edge doesn’t exist ((u,y) not in graph.edges) in O(1).

If k>2, check that several permutations don’t result in the same edge in O(k) (len(goal_edges)
== len(set(goal_edges)), where goal_edges is the list of all the resulting edges if the swap is
accepted).

— perform_swap :
Updates the Graph data structure depending on the swap. Each swap between two edges (u,v) and
(x,y) is in amortized O(1) time (for undirected graphs - easily generalized to directed graphs):

% Gets the position v_idx = edges[(u,v)] of v in neighbors[u] in amortized O(1) (edges is a hash
map), and x_idx = edges[(y,x)].

* Updates the value neighbors[u][v_idx] = y in amortized O(1).
Deletes edges[(u,v)] and edges[(v,u)] in amortized O(1).

* Adds edges[(u,y)] = y and edges[(y,u)]=x_idx in amortized O(1).

10 Chapter 3. Development guide

pks, Release 1.0

 Other methods are implemented to measure some metrics on the graph. Each metric has an “init” and an “update”
function, the “init” function computes the value for the input graph, while the “update” methods updates it after
each swap without having to compute it again for edges that haven’t changed.

3.4 Stat

* The Stat class implements methods to estimate the sampling gap of the MarkovChain object and follows its
convergence.

* The sampling gap is the number of required steps of the stationary Markov Chain between two samples to ensure
that both samples are uncorrelated.

* Two methods are implemented to choose a sampling gap:
— estimate_sampling_gap:
% First runs a burn-in step to obtain a fully stationary Markov Chain.
+ Estimates the acceptation rate A of the Markov Chain during the burn-in.

* Initializes the sample gap value at eta = M/A ** where **M is the number of edges in the graph and
A the acceptation rate of the chain.

% Starting from the same final step of the burn-in, runs 10 different chains for S00eta steps, measuring
1 assortativity (or number of triangles) each eta step.

% If the autocorellation at lag 1 of each time series of assortativities (or number of triangles) returns that
at least 9 out of the 10 chains are not correlated, the sampling gap is considered valid.

- If the sampling gap eta is valid, tries eta=eta/2.
- If not, tries eta=2eta.
- Stops as soon as the behaviour changes and returns the last valid eta value.
— run_dfgls:
% If no eta value is given in input, estimates an eta value.
% While the MarkovChain has not converged:

- Runs the MarkovChain object for eta steps and collects the assortativity (or number of triangles)
at each step.

- After eta steps, checks if the time series of assortativity values (or number of triangles) has con-
verged using a DFGLS test.

3.5 Contribution

* To contribute to the package, you can put issues on the gitlab repository to either report a problem or to ask a
question.

* Any pull request will be reviewed and integrated if the contribution is within the scope of the project.

3.4. Stat 11

pks, Release 1.0

12 Chapter 3. Development guide

CHAPTER
FOUR

BENCHMARK

* On this page, you will find a benchmark of pks on different datasets with various constraints, to give an idea of
what to expect in terms of execution time and a better grasp of how to choose the sampling gap.

4.1 Datasets

* For this benchmark, we used the following datasets (we note n the number of nodes and m the number of edges):

karateclub: undirected simple graph: n=34, m=78, available here

lesmiserables: undirected simple graph: n=77, m=254, available here

powergrid: undirected simple graph, n=4941, m=6594, available here

yeast: directed simple graph, n=688, m=1079, available here

airtraffic: directed simple graph: n=1226, m=2615, available here

crime: bipartite graph, n=829+551, m=1476, available here

4.2 Protocol

* We generate samples of 1000 graphs.
* The parameter g is set to 2.

* We follow the convergence using the number of triangles of the graph except for the case of bipartite graphs,
where we use the assortativity of the graph.

* An algorithm adapted from [1] estimates the sampling gap.
* The datasets are tested with different constraints:
— Fixed degree sequence : the k-swaps do not affect the degree sequence of the graph.

— Fixed joint degree matrix : the k-swaps do not affect the joint degree matrix of the graph. Note that it
implies that the degree sequence is also fixed.

— Fixed degree sequence and number of mutual dyads : the k-swaps do not affect the degree sequence of the
graph and the number of reciprocal links of the graph (directed graphs only).

13

http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/moreno_lesmis/
http://konect.cc/networks/opsahl-powergrid/
https://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://konect.cc/networks/maayan-faa/
http://konect.cc/networks/moreno_crime/

pks, Release 1.0

4.3 Results

dataset constraint eta value eta estimation convergence total runtime
runtime (in runtime (in (in seconds)
seconds) seconds)
karateclub degree sequence 751 377 2 1575
lesmiserables degree sequence 1781 1203 5 4955
powergrid degree sequence 16137 50995 52 233528
yeast degree sequence 3394 5318 4 25997
airtraffic degree sequence 6719 9063 19 37817
crime degree sequence 3869 3026 38 13885
karateclub joint degree ma- 5053 2567 8s 4184
trix
lesmiserables joint degree ma- 24643 15987 43 26398
trix
powergrid joint degree ma- 197180 1644229 6023 2001551
trix
yeast degree sequence 3426 5719 103 27386
+ dyads
airtraffic degree sequence 12332 123153 26 610772

+ dyads

4.4 References

[1] Dutta, U., Fosdick, B.K., & Clauset, A. (2021). Sampling random graphs with specified degree sequences. arXiv
preprint arXiv:2105.12120.

14

Chapter 4. Benchmark

CHAPTER
FIVE

PYTHON API DOCUMENTATION

* Python API

5.1 Graph

Contents

* Graph Class

5.1.1 Graph Class

class kedgeswap.Graph.Graph (directed=False)
Bases: object
Read input graph and store graph as adjacency list
N

number of nodes

Type
int

number of edges

Type
int
neighbors
store adjacency list for each node
Type
dict(list)
in_neighbors
used only in directed graph, for each node store their neighbors from “in-edges”

Type
dict(list)

15

pks, Release 1.0

out_neighbors

used only in directed graph, for each node store their neighbors from “out-edges”

Type
dict(list)

edges

in undirected graph:
* for each edge (u,v), store the position | of v in the adjacency list of u | in directed graph:
* for each edge (u,v), store a quartuplet | (v_idx, u_idx, v_out_idx, u_in_idx), where: | v_idx is the
position of v in u’s adjacency list | u_idx is the position of u in v’s adjacency list | v_out_idx is the
position of v in out_neighbors[u]_ | u_in_idx is the position of u in in_neighbors[v] unique_edges:
list()

used mostly for undirected graph, to store one version of each edge

Type
dict()

directed

enable if graph is directed

Type
bool

copy O

read_ssv(in_file)

Read space separated values Input format is separated with spaces or tabulations, e.g.:

01
32
24

where the first columns is the source node and the second column is the destination node. |When
self.directed == True, the graph is considered directed and edges are stored as written in the file, else
they are stored as (src, dest) with src < dest. Self Loop and multi-graphs are not accepted.

Parameters
in_file (str) - path to the input file

read_ael (in_file)

Read ael format TODO example format TODO lecteurs pour d’autres formats

to_ael Coutput)

to_ssv (output)

16 Chapter 5. Python APl Documentation

pks, Release 1.0

5.2 MarkovChain

Contents

e MarkovChain Class

5.2.1 MarkovChain Class

MarkovChain class, used to perform k-edge on a Graph object.

class kedgeswap.MarkovChain.MarkovChain(graph, N_swap=0, gamma=0, use_jd=False,

use_triangles=False, use_assortativity=False,
use_mutualdiades=False, verbose=False, keep_record=False,
log_dir=None, debug=False)

Bases: object
make swaps
pick_kQ)

Pick k value using powerlaw distribution. The exponent of the powerlaw can be fixed by the gamma argu-
ment.

Returns
k (int) — number of edges to swap

find_swap (k)

Randomly pick k edges to swap, and randomly pick a permutation When self.force_k == True, permutation
is a cyclic permutation, else it is a random permutation, with possible identity for some edges.

Parameters
k (int) — number of edges to swap

Returns
* edge_to_swap (list(tuples)) — list of the edges to swap

» permutation (list(tuples)) — list of the edges with which we should swap the edges in
edge_to_swap

o _edge_to_swap (list(int)) — indexes in unique_edges of the edges in edge_to_swap

check_swap (edge_to_swap, permutation)

Verify constraints to see if swap can be accepted or not
Parameters
e edge_to_swap (list (tuples)) — list of the edges to swap

e permutation (1ist (tuples)) — list of the edges with which we should swap the edges
in edge_to_swap

Returns
swap_accepted (bool) — true if swap can be accepted

check_dyads (edge_to_swap, permutation)

5.2.

MarkovChain 17

pks, Release 1.0

perform_swap (edge_to_swap, permutation, edge_to_swap_idx)

When permutation is accepted, swap the edges in the graph data structure.
Parameters
* edge_to_swap (list (tuples)) — list of the edges to swap

e permutation (list (tuples)) — list of the edges with which we should swap the edges
in edge_to_swap

* edge_to_swap_idx (list(int)) — index of the edges in graph.unique_edges (useful
when undirected)

init_assortativity()

Compute Assortativity initial value, using the formula found in “Dutta, Fosdick et Clauset, 2022: Sampling
random graphs with specified degree sequences”.

Using the notation deg(u) for the degree of u, and Axy for the adjancency matrix value for nodes
x and y, and Sk = sum_x (deg(x) * k), we compute the following values:

-S1, S2 and S3, -Sl= sum_xy (Axy * deg(x) * deg(y))
Using these values, the assortativity is computed as :
r=(S1*SI1-S2*%82)/(S1*S3-S2%82)

Since Sl is the only value to depend on the presence of each link, we store the denominator to update the
assortativity value in O(1) after each swap.

update_assortativity (edge_to_swap, permutation)

Given a K-edge swap, update assortativy value using generalised formual from “Dutta, Fosdick et Clauset,
2022: Sampling random graphs with specified degree sequences”

count_triangles()

Enumerate and store all triangles found in the graph. For undirected graphs:

we store each triangle in a set of tuplet ((u,v,w)) where | u, v and w are the node, withu < v < w,
and we store each link | involved in the triangle in edges_in_triangles (pointing to the triangle
tuplet) For directed graphs:

we store each triangle thrice in a set of tuplet, with each node as a starting point, | e.g. for
triangle (u,v,w) we store {(u,v,w), (v,w,u), (w,u,v)}. We store each link | involved in the triangle
in edges_in_triangles (pointing to the triangle tuplet)

update_triangles(edge_to_swap, permutation)

Update the sets of triangles by looking at each edge swap:
« if the initial edge was involved in a triangle, remove triangle from sets
« if the goal edge creates a triangle, add it to the sets
init_joint_degree()
Initialize the joint degree matrix.

joint_degreel[i - 1, j - 1] gives the number of links from nodes of degree i to nodes of the degree j. Ini-
tialise the joint degree matrix by looping over each node n, then each neighbor nn of n, and incrementing
joint_degree[deg(n), deg(nn)] by 1/2. (increment by 1/2 to take into account that each edge is added twice)

18

Chapter 5. Python APl Documentation

pks, Release 1.0

update_joint_degree_old(edge_to_swap, permutation)

DEPRECATED - Only used for unit testing ! Given a permutation, compute the changed in the joint degree
matrix. Compute the update by copying the joint degree matrix, looping over each edge swap, decrementing
the joint degree value for the ‘old’ edges and incrementing the joint degree value for the ‘new’ edges.

Parameters: edge_to_swap : list of the edges to swap permutation : list of the edges with which we should
swap the edges in edge_to_swap

Return : updated_joint_degree : np.array, the updated version of the joint degree matrix if the permutation
given in input is performed.
update_joint_degree (edge_to_swap, permutation)

Given a permutation, compute the changed in the joint degree matrix. Compute the update by copying the
joint degree matrix, looping over each edge swap, decrementing the joint degree value for the ‘old’ edges
and incrementing the joint degree value for the ‘new’ edges.

Parameters: edge_to_swap : list of the edges to swap permutation : list of the edges with which we should
swap the edges in edge_to_swap

Return : updated_joint_degree : np.array, the updated version of the joint degree matrix if the permutation
given in input is performed.

run(N_swap=None)

K-edge swap algorithm. Start by computing assortativity initial value, then perform N_swap, each time
checking the constraints and computing metrics.

5.3 Stat

Contents

e Stat Class

5.3.1 Stat Class

class kedgeswap.Stat.Stat (mc, eta=None, turbo=Fulse, verbose=False, njobs=1)
Bases: object

Class to compute statistics on a Markov Chain object. This class implements methods to estimate the Markov
Chain’s sampling gap, and to follow its convergence using the DFGLS test.

Attributes:

mc: MarkovChain object
The MarkovChain object on which we follow the convergence.

eta: float
The sampling gap used for the Markov Chain. The sampling gap gives a number of steps to make on the
Markov Chain to obtain two uncorrelated graphs.

turbo: bool
Enable to make a fast but unverified estimation of the sampling gap.

5.3. Stat 19

pks, Release 1.0

verbose: bool
Enable to add information to the logs

static CheckAutocorrLagl(S_T, alpha)

Check the autocorrelation with lag 1 of a time serie.
Parameters

e S_T (list(float)) — List of assortativity(/number of triangles) values to test autocorre-
lation

¢ alpha (float) — Significance level of the test (usually fixed to 0.04).

guesstimate_sampling_gap (graph, gamma)

Sampling gap estimation is long, this function gives an empirical estimation of the sampling gap. Measure
the acceptation rate A of the Markov Chain, and fix the sampling gap as 10*(1/A) * M, where M is the
number of edges of the network. This estimation was fixed empirically to overestimate the sampling gap
we measure using the estimation from Dutta, U. (2022).

estimate_sampling_gap (graph, gamma)
Estimate the sampling gap for the MCMC, following algorithm 1 (and using the same values) of Dutta, U.
(2022). Sampling random graphs with specified degree sequences

run_dfgls Coutput)

If no sampling gap eta specified, run estimation of eta. Run Markov Chain for eta steps, retrieve list of
assortativity values (or number of triangles) and estimate the convergence of this time serie, to decide if
the Markov Chain is converged.

20

Chapter 5. Python APl Documentation

k

kedgeswap.Graph, 15
kedgeswap.MarkovChain, 17
kedgeswap.Stat, 19

PYTHON MODULE INDEX

21

pks, Release 1.0

22 Python Module Index

INDEX

C module, 17
check_dyads () (kedgeswap.MarkovChain.MarkovChain kedgeswap.Stat

method), 17 module, 19
check_swap() (kedgeswap.MarkovChain.MarkovChain M

method), 17
CheckAutocorrLagl() (kedgeswap.Stat.Stat static M (kedgeswap.Graph.Graph attribute), 15

method), 20 MarkovChain (class in kedgeswap.MarkovChain), 17
copy) (kedgeswap.Graph.Graph method), 16 module
count_triangles() (kedgeswap.MarkovChain.MarkovChain kedgeswap.Graph, 15

method), 18 kedgeswap.MarkovChain, 17

kedgeswap.Stat, 19
D
directed (kedgeswap.Graph.Graph attribute), 16 N
N (kedgeswap.Graph.Graph attribute), 15

E neighbors (kedgeswap.Graph.Graph attribute), 15
edges (kedgeswap.Graph.Graph attribute), 16 0O
estimate_sampling_gap() (kedgeswap.Stat.Stat

method), 20 out_neighbors (kedgeswap.Graph.Graph attribute), 15
F P
find_swap() (kedgeswap.MarkovChain.MarkovChain Per form_swap () (kedgeswap.MarkovChain.MarkovChain

method), 17 method), 17

pick_kQ (kedgeswap.MarkovChain.MarkovChain

G method), 17
Graph (class in kedgeswap.Graph), 15 R
guesstimate_sampling_gap() (kedgeswap.Stat.Stat

method), 20 read_ael () (kedgeswap.Graph.Graph method), 16

read_ssv() (kedgeswap.Graph.Graph method), 16
| run() (kedgeswap.MarkovChain.MarkovChain method),
19

in_neighbors (kedgeswap.Graph.Graph attribute), 15
run_dfgls() (kedgeswap.Stat.Stat method), 20

init_assortativity()

(kedgeswap.MarkovChain.MarkovChain g

method), 18
init_joint_degree() Stat (class in kedgeswap.Stat), 19

(kedgeswap.MarkovChain.MarkovChain

method), 13 T

to_ael () (kedgeswap.Graph.Graph method), 16
K to_ssv() (kedgeswap.Graph.Graph method), 16
kedgeswap.Graph
module, 15

kedgeswap.MarkovChain

23

pks, Release 1.0

U

update_assortativity()
(kedgeswap.MarkovChain.MarkovChain
method), 18

update_joint_degree()
(kedgeswap.MarkovChain.MarkovChain
method), 19

update_joint_degree_old()
(kedgeswap.MarkovChain.MarkovChain
method), 18

update_triangles() (kedgeswap.MarkovChain.MarkovChain
method), 18

24

Index

	Installation
	Requirements
	Installation

	Usage
	Input Format
	Output
	Target Constraints
	Command Line Interface

	Development guide
	Package Structure
	Graph
	MarkovChain
	Stat
	Contribution

	Benchmark
	Datasets
	Protocol
	Results
	References

	Python API Documentation
	Graph
	Graph Class

	MarkovChain
	MarkovChain Class

	Stat
	Stat Class
	Attributes:

	Python Module Index
	Index

